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Abstract 

Extensions to the Ivantsov dendrite growth model are presented, which allow for increased solute 

levels in the field ahead of the dendrite tip. This model is intended for use with video-microscopy 

experimental results taken from synchrotron radiography sources. Ideally, the composition and 

composition gradient at the solid-liquid interface would be measured. However, due to the spatial 

resolution limitations, it is difficult to accurately measure the composition at the interface. This 

paper sets out an extended description of the theory where measurements ahead of the tip 

determine the operating conditions at the tip. This extended model of dendritic growth may be 

incorporated into solidification process models, thus improving predictions where the solute field 

ahead of the tip may change due to solutal build up from neighbouring dendrites. It is shown that 

growth arrest is predicted in cases where local solutal enrichment reaches a critical level.  A 

distinction between global and local tip undercooling is made. The usefulness of this model is 

demonstrated with an application to experimental results for a binary (Al-Ge) alloy.   

1. Introduction 

Metallic alloys typically solidify as dendritic crystal structures; hence, detailed reviews of dendritic 

growth models have been written [1,2,3,4]. The dendritic growth models are usually based on the 

premise of diffusion-controlled transport around a parabolic solid-liquid interface. Ivantsov [5,6] 

provided the elementary mathematical treatment of the steady-state transport process at the solid-

liquid interface by diffusion. Later Horvay and Cahn [7] provided a rigorous mathematical treatment 

of the steady-state diffusion process around parabolic interfaces with various solid geometries 

including the 3D paraboloid of revolution, the elliptical paraboloid, and the 2D parabolic plate. In the 

basic models of Ivantsov and Horvay-Cahn, it is assumed that a boundary condition exists at an 

infinite distance from the solid-liquid interface where the field parameter is at some nominal value. 

Hence the Ivantsov and Horavy-Cahn solutions are truly established for isolated dendrites that have 

no interfering neighbours. 



2 

 

For thermal dendrites growing in a pure substance, it is the transport of heat from the solid-liquid 

interface that determines the growth rate. Hence, Ivantsov’s diffusion transport model has been 

applied to the temperature field to determine the growth conditions. For solutal dendrites (found in 

metallic alloys) it is the transport of both solute and heat from the solid liquid interface that 

determines the growth rate. Lipton, Glicksman, and Kurz [8,9] demonstrated how the Ivantsov 

mathematical model could be deployed to treat both the heat transport and solute transport 

problems for unconstrained equiaxed grains. However, Trivedi and Kurz [2] showed that if the 

temperature field is known or assumed a priori (for example, in the directional solidification 

scenario) then we only need to use the Ivantsov solution to treat the solute transport problem.  

An additional selection criterion is required to determine the operating conditions (the combination 

of radius and growth rate) at the dendrite tip. Stefanescu [10] gives a summary of three selection 

criteria: the extremum criterion, the marginal stability criterion, and the microsolvability theory. The 

extremum criterion is seldom used and shall be ignored in this discussion.  Both the marginal 

stability criterion [11,12] and the microsolvability theory [13,14] provide a solution for a tip selection 

parameter σ*. The marginal stability calculates the tip selection parameter as �� � 1 4��⁄ . Marginal 

stability determines that the tip selection parameter is assumed constant for all materials under all 

conditions. Work has been done to validate growth models of thermal dendrites in organic 

transparent systems [4] and the marginal stability parameter gives a reasonable approximation of 

the experimentally-observed growth conditions. Marginal stability is deemed fit for purpose in many 

cases. However, the marginal stability criterion has no secure physical basis. And empirical evidence 

[15] has shown that in some cases the measured tip selection parameter deviates significantly 

enough to warrant further investigation. The microsolvability theory, as described in [10] and [16] , 

gives a tip selection parameter, σ
*
, based on the crystal anisotropy, ε. The microsolavability theory is 

deemed to be derived from a sounder theoretical basis than the marginal stability theory. Muschol 

et al. [17] summarised available surface energy anisotropy strength, ε, for transparent alloys and 

compared with microscopic solvability theory. Differences between theoretical and experimental 

values for σ
*
 were demonstrated. Unfortunately, for most metallic alloys there is a lack of credible 

experimental data for surface energy anisotropy strength. Rebow and Browne [18] discuss a simple 

scaling law which may be used to estimate the stability parameter based on scaling the crystal 

anisotropy, ε. Recently Mullis [19] presented results from a phase field model where the tip 

selection parameter, σ
*
,  was calculated from the velocity and curvature data. The tip selection was 

shown to be changing as a function of tip undercooling. Comparisons were made with another 

model that used the constant value for σ
*
 based on the marginal stability criterion.  

In macro models of solidification, the heat transport problem, or heat equation, is solved 

numerically. Furthermore, a polynomial expression written in terms of undercooling at the dendrite 

tip, determined from the Ivantsov solution, may be used to determine the growth rate of the 

dendrite envelope (see for example [20,21,22]). By using the Ivantsov solution in these models, it is 

automatically assumed that the effects due to solutal interactions are negligible. McFadden and 

Browne [23] discuss this assumption using numerical simulation. The thermal interaction between 

dendrites is extensive because of the long thermal lengths. However, because of the short solutal 

lengths, dendritic structures in the early stages of growth can be treated as being solutally isolated. 

It was proposed that only in the final stages of diffusion-controlled solidification or for high 

nucleation densities (short distances between dendrites), that we see strong solutal interaction. 

Other macro models described in literature [24,25]solve the heat transport problem numerically and 
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then use conservation of solute in the liquid and the Ivantsov solution to determine the growth rate 

of dendrite tips. An average solute level is assumed to apply to the liquid between dendrites (the 

region that has been called extradendritic liquid). However, the Ivantsov solution implicitly assumes 

that the average composition is present at an infinite distance from the solid-liquid interface. 

Martorano et al. [25] coined the phrase ‘solutal blocking’ to describe solutal interaction between the 

columnar and equiaxed zones in castings. 

Work has been done to include the effects of convection on the dendrite tip models [26,27,28] 

where, typically, the authors define a boundary layer around the solid-liquid interface where a 

modified Ivantsov expression is applied. In the modified Ivantsov the infinite boundary condition is 

replaced and the nominal composition is set at some finite length, that is, at the boundary layer 

thickness. Boundary layer theory from fluid mechanics is used determine the thickness of the 

boundary layer. Recent experimental work has been conducted on transparent alloys to see the 

effects of convection on a dendrite under settling conditions [29]. It was shown that during 

sedimentation, orientation and crystal rotation play a role in affecting the dendritic growth rate. 

Advances in experimental techniques using synchrotron radiation sources have allowed us to see in-

situ metallic alloy solidification for thin-film samples (for example [30,31,32]). These developments 

are significant for the modelling of solidification in metallic alloys. In the experimental results it is 

possible to see the extent of the boundary layers of solute around the dendrite crystals. Multiple 

equiaxed grains have been observed up to the point of impingement [33,34].  

This paper presents details of an extended and generalised version of Ivantsov/Horvay-Cahn theory 

that can be compared to the experimental results available from synchrotron irradiation. 

Specifically, this model includes a feature to investigate solute build up to levels above the nominal 

composition at finite distances from the solid-liquid interface. This enables estimation of the growth 

conditions at the dendrite tip by using experimental measurements of solute levels at finite 

distances in advance of the tip; thus, overcoming the problem of low resolution at the solid-liquid 

interface.  

It is proposed that this model, in conjunction with future experimental results, can play a role in 

developing an understanding of length scales in castings, especially in relation to solutal interactions. 

This model will be useful for all macroscopic (and mesoscopic) models especially when modelling the 

final stages of solidification. In addition, results from the model may be useful for comparing to 

results from numerical phase field models. 

 

2. Mathematical Model Details 

An ansatz solution is required as part of the mathematical framework. Ansatz solutions are provided 

in literature. Brener [35], for example, proposed an ansatz for a 3D needle crystal that uses a 

trigonometric function. Similar to Temkin’s approach [36], we use an ansatz solution that uses an 

integral function. Specifically, the integral function is given as 

	
�, � � � ���
��
����

�
� ��      (1) 
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where u is an intermediate parameter in the integration process. B is a shape factor, which will be 

discussed later. 

We assume the ansatz solution (interpolation function) for the solute profile in the liquid, cl, ahead 

of the dendrite tip, which is of the form 

��
�� � � �  � ���
��
����

�
!"# ��      (2) 

The terms a and b are constants. The problem is defined in terms of parabolic co-ordinates, which is 

often the case in literature to solve for problems involving a parabolic interface [7,26]. The term α 

simply describes concentric parabolas and α = 1 represents the solid-liquid interface. The parameter 

P is the solutal Peclet number. At the solid-liquid interface, the composition is given as ct, hence the 

boundary condition at the interface described as 

� � 1,   ��
�� � �%     (3) 

Substituting these values into equation (2) gives 

�% � � �  � ���
��
����

�
! ��    (4) 

Or by substituting with equation (1) 

�% � � �  	
&, �      (5) 

Another boundary condition is obtained by setting the composition to some level cf at a finite 

parabolic coordinate, αB, ahead of the solid-liquid interface, 

� � ��,   ��
�� � �'     (6) 

Substituting this boundary condition into equation (2) gives 

�' � � �  � ���
��
����

�
!"(# ��    (7) 

Replacing the integral term with equation (1) yields 

�' � � �  	
&��� , �.     (8) 

To solve for the constant b we subtract equation (8) from equation (5) to get 

�% ) �' �  *	
&, � ) 	
&��� , �+   (9) 

and then rearranging gives 

 � ,-.,/
0
!,��.01!"(# ,�2     (10) 

Substitution of equation (10) into equation (8) gives 

�' � � � 1,-.,/2
0
!,��.01!"(# ,�2 	
&��� , �     (11) 
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and further rearranging develops the expression for the constant a 

� � �' ) 1,-.,/201!"(# ,�2
0
!,��.01!"(# ,�2     (12) 

We can now substitute for a and b in equation (2) to get a complete expression for the solute profile 

in the liquid that satisfies the conditions of equations (3) and (6) 

��
�� � �' � 1�% ) �'2 01!"#,�2.01!"(# ,�2
0
!,��.01!"(# ,�2     (13) 

By using conservation of solute at the tip, it is known that 

3,4
5�
35 � ) 6

7 �%
1 ) 8�      (14) 

where the derivative at the tip is given in terms of the Cartesian coordinate z along the axis of the 

dendrite, V is the growth rate, D is the diffusivity of solute species in liquid, and k is the partition 

coefficient. 

To find the derivative of the solute profile at the solid-liquid interface, we must obtain a result for 

the expressions in terms of α. Removal of all terms that do not include α, yields 

93,4
"�
3" :";< � ,-.,/

0
!,��.01!"(# ,�2   9 ==" 1	
&��, �2:";<    (15) 

We recognise that we must differentiate the following term with respect to α 

	
&��, � � � ���
��
���� ���

!"#       (16) 

Differentiating under the integral sign using the standard calculus definition gives 

9 ==" 1	
&��, �2:";< � .�
�>?<�(>

     (17) 

Substituting back into equation (15) yields 

93,4
"�
3" :";< � .�1,-.,/2

@0
!,��.01!"(# ,�2A�>?<�(>
    (18) 

We need to convert from the parabolic coordinate system to the Cartesian system. The conversion 

for the z coordinate is given in terms of the parabolic coordinates α and β as  

B � <
� C
�� ) D��     (19) 

where R is the tip radius. 

By simple differentiation it is shown that  

35
3" � C�      (20) 
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Applying equation (20) at the tip (where α=1), we have the expression for conservation of solute, 

equation (14), which can be rewritten as 

�%
1 ) 8�E � ) 7
F  93,4
G�

3" :";<     (21) 

Significantly, the choice of ansatz solution determines the composition and composition gradient at 

the tip. The composition gradients provided from alternative ansatz solutions may be compared to 

that provided here. 

Substituting equation (18) into equation (21) and rearranging we get  

,-.,/
,-
<.H� � F6

�7 I!?1 � (
>  J	
&, � ) 	
&��� , �K   (22) 

The solutal Peclet number is defined as 

& � F6
�7       (23) 

The term on the left-hand side of equation (22) is called the supersaturation 

Ω � ,-.,/
,-
<.H�      (24) 

Typically the supersaturation is given using the original composition co instead of cf, however, 

authors such as Martorano et al. [25] have demonstrated how the supersaturation can be modified 

to allow for higher solute levels ahead of the tip. In this analysis, if cf is replaced with co we get the 

customary form of the equation. 

Substituting for the supersaturation and the Peclet number in equation (22) gives 

Ω � & I!?1 � (
>  J	
&, � ) 	
&��� , �K    (25) 

Applying a parabolic to Cartesian conversion [26] we have  

��� � 1 � �M
F       (26) 

where δ is defined as the look-ahead distance from the dendrite surface to where the composition 

was given as cf. Thus, we have the expression 

Ω � & I!?1 � (
>  @	
&, � ) 	1&11 � #N

O 2, 2A   (27) 

We may call the term on the right hand side a modified Ivantsov solution that has provision for a 

shape factor B and a finite look-ahead distance δ. 

PQ
&, R, C, �� & I!?1 � (
>  @	
&, � ) 	1&11 � #N

O 2, 2A  (28) 

Hence from our initial ansatz assumption, we have a final expression for the dendrite growth law 

with provision for solute build-up to a level of cf at a finite distance δ ahead of the tip. 
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Ω � ,-.,/
,-
<.H� � PQ
&, R, C, �    (29) 

To achieve the supersaturation for growth conditions the far-field composition, cf, must be less than 

the composition at the tip, ct.   

Figure 1 shows a schematic of the dendrite composition ahead of the dendrite along its z axis. Note 

that the composition at the tip is ct and declines to some value cf at a distance δ ahead of the tip. 

 

Figure 1: Composition ahead of a dendrite 

Horvay and Cahn [7] were the first to define the parameter B as shape factor when they used the 

method of envelope formation. The method outlined in this manuscript is quite distinct from that of 

Horvay and Cahn. However, in their approach to discussing the problem, Horvay and Cahn showed it 

was more convenient to describe the problem using the aspect ratio A, which is  

T � <
√<��      (30) 

The solution for a 2D dendrite plate is given when A = 0. The solution for a 3D paraboloid of 

revolution is given when A = 1. The solution is for an elliptical paraboloid is given within the range 0 

< A < 1.  In the following section we discuss further the relationships between equation (29) and the 

classical solutions to dendrite growth problems given in literature. It is demonstrated that equation 

(29) is a general solution to the Ivantsov problem. The fundamental assumption with this analysis 

(and all the Ivantsov theory) is that equation (2) is the interpolation function for the steady-state 

solute diffusion problem. 

To get an expression for undercooling at the dendrite tip we first rearrange equation (29) to get an 

expression for the composition at the tip 

�% � ,/
<.
<.H�VW
!,M,F,��     (31) 
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As is typical in classic dendrite growth theory we need an additional selection parameter for 

determining the tip radius, R, which is 

C � X
Y� * <

�Z!,-
H.<��[F+     (32) 

where σ
*
 is the selection parameter, Γ is the Gibbs-Thompson coefficient, m is the slope of the 

liquidus line from the phase diagram and G is the temperature gradient. The temperature gradient 

can usually be ignored because of its small effect on the results (hence GR = 0). 

Using the relationship from the phase diagram we define the global undercooling, ΔTT, as the 

difference between the liquidus temperature (taken at the original composition, co) and the tip 

temperature, Tt.  

Δ]^ � ]_
�`� ) ]%     (33) 

Assuming the liquidus is a straight line with slope m,. the liquidus temperature is   

]_
�`� � ]a � b�`      (34) 

where TM is the melting temperature of the pure solvent element. 

 The tip temperature is obtained from a similar line adjusted for curvature undercooling, ΔTR, 

]% � ]a � b�% ) ∆]F.      (35) 

Generally, the curvature undercooling is given as 

∆]F � Γ * <
Fe � <

F#+        (36) 

where R1 and R2 are the principal radaii of curvature. However, for the 2D scenario the curvature 

undercooling is Δ]F � Γ C⁄  and for the 3D scenario it is given as Δ]F � 2Γ C⁄ . Stefanescu [10] 

discusses curvature undercooling in more depth. 

 By using equation (31) for the tip composition and subtracting equation (35) from equation (34) we 

get the total global undercooling 

Δ]^ � b *�` ) ,/
<.
<.H�VW
!,M,F,��+ � ∆]F    (37) 

This new expression for the undercooling is different from that of previous authors in two repects: 1) 

the modified Ivantsov function is used, and 2) the composition cf ahead of the dendrite tip which 

may be higher than co is considered. 

Alternatively, one can define an expression in terms of local undercooling at the tip, ΔTt. 

Δ]% � ]_1�'2 ) ]%      (38) 

The local undercooling is defined in terms of the composition at the far-field position, cf, and it is 

given by the equation 
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Δ]% � b�' *1 ) <
<.
<.H�VW
!,M,F,��+ � ∆]F     (39) 

The difference between the global undercooling and the local undercooling is obtained by 

subtracting equation (39) from (37) 

∆� ∆]^ ) ∆]% � b1�` ) �'2      (40) 

 This undercooling is the difference between the global undercooling and the local undercooling 

measured at a distance δ ahead of the dendrite tip. This difference is due to a solute increase above 

the original composition measured at δ. 

 

Figure 2:  Phase Diagram representation showing the global and local undercooling 

Of course when there is no solutal interaction or global solutal enrichment ahead of the dendrites, δ 

tends towards infinity, cf is replaced throughout with co, and Δ is zero. 

The global and local undercoolings are represented on a phase diagram in Fig. 2.  Figure 3 shows a 

schematic representation of the liquidus temperature profile ahead of the dendrite tip. Note that 

the local undercooling must be measured at the look-ahead distance, δ. Figure 3 shows the 

constitutional undercooling (shaded part of plot) when the dendrite is growing in a constrained way 

with a temperature gradient of G imposed at the tip. 
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Figure 3: Schematic view of the liquidus temperature and constitutional undercooling ahead of a dendrite tip that is 

growing in a constrained way 

 

3. Calculation 

The analytical model presented here is solved numerically. In this work, the integral expression given 

in equation (1) is calculated to within a sufficient order of accuracy using a trapezoidal rule. The 

integrand expression in equation (1) tends to zero as the intermediate variable, u, tends to infinity, 

hence the integration may be truncated. A double iterative scheme is used to solve for the tip radius 

and growth velocity for a given selection parameter. 

4. Discussion on the Generality of the Model 

The general nature of the extended Ivantsov function developed here is demonstrated by letting 

various parameters tend to limiting values. 

Our starting point is the general equation for the growth rate 

PQ
&, R, C, � � ,-.,/
,-
<.H� � & I!?1 � (

>  @	
&, � ) 	1&11 � #N
O 2, 2A  (41) 

Taking the integral function 

	
�, � � � ���
��
����

�
� ��     (42) 

it can be seen that in the limit when B tends to zero we get the exponential integral function used in 

the original Ivantsov theory 

lim�jk 	
�, � � l<
��     (43) 

where  
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l<
�� � � ���
�

�
� �� .      (44) 

Thus, If we set cf = co and let B tend to zero we have 

lim�jk PQ
&, R, C, � � ,-.,m
,-
<.H� � & I!   nl<
&� ) l< *&11 � #N

O 2+o (45) 

This expression is used by Gandin et al. [28] and Pines et al. [37] among others. 

Next if we let the look-ahead distance, δ, tend to infinity 

limMj� 	 *& *1 � �M
F + , + � 0     (46) 

From our general expression we see that when δ tends towards infinity our expression tends 

towards that given by Horvay and Cahn for an elliptical paraboloid [7] 

limMj� PQ
&, R, C, � � & I!?1 � (
>  	
&, �    (47) 

Also as B tends to zero this equation becomes the well-established 3D Ivantsov equation 

limMj��jk
PQ
&, R, C, � � & I!l<
&�      (48) 

This is the equation for the 3D paraboloid of revolution. 

Finally letting B tend to infinity gives the 2D solution as demonstrated next. 

First rewriting expression (47) given above in integral form 

limMj� PQ
&, R, C, � �  & I!?1 � (
>   � ���

��
���� ���
!     (49) 

Next, using a change of variables approach, we set a new intermediate parameter t instead of u, 

where 

� � q�       (50) 

By differentiating we see that 

�� � 2q �q      (51) 

and when u is set to the lower integration limit (see integral in equation (49)) 

� � &       (52) 

we have 

q � √&       (53) 

Similarly at the upper integration limit, as u tends to infinity so does the variable t. 

So by rewriting the expression in terms of t gives 
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limMj� PQ
&, R, C, � �  & I!?1 � (
>   � ��-#

�%#
��%#� 2q �q�
√!     (54) 

After some rearranging of the term in the denominator of the integrand yields 

limMj� PQ
&, R, C, � � & I!?1 � (
>   �

√� � ��-#

?<�-#
(

�q�
√!      (55) 

Recognising that  

<
√� ?1 � (

> � ?<
� � <

!       (56) 

 gives 

limMj� PQ
&, R, C, � �  & I!?<
� � <

!  2 � ��-#

?<�-#
(

�q�
√!     (57) 

As B tend to infinity  

limMj��j�
PQ
&, R, C, � �  & I!?<

!  2 � I.%#  �q�
√! �  √& I! 2 � I.%#  �q�

√!    (58) 

A formal definition of the complimentary error function is  

Irs�
�� � �
√t � I.%#  �q�

�      (59) 

Thus substituting with the complimentary error function gives 

limMj��j�
PQ
&, R, C, � � √& I!√�  Irs�1√&2    (60) 

And this is the expression given by Horvay and Cahn for the 2D dendrite. 

If we wish to add the look-ahead parameter δ to the 2D solution, we get the expression 

lim�j� PQ
&, R, C, � �  √& I!√�  uIrs�1√&2 ) Irs� v?& *1 � �M
F +wx   (61) 

 

5. Results and Discussion 

Figure 4 shows various interpolated solute profiles for the case where ct = 11 wt.%, cf = 10 wt.%, and 

δ is at infinity. For demonstration, the tip radius has been set to 5 µm and the Peclet number has 

been set to 0.025. For this discussion it is convenient to discuss the aspect ratio A rather than the 

parameter B. Equation (30) describes the relationship between the two parameters. Figure 4 shows 

a series of solute profiles starting with A = 1 (or B = 0) and stepping down in increments of 0.1 to the 

value A = 0 (which is B at infinity). As parameter A decreases the composition levels in the profile 

ahead of the tip increase and the composition gradients at the tip location reduce. It is clear to see 
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that as A reduces to zero (or B tends towards infinity) the profile converges asymptotically to a final 

value (i.e., A= 0). 

 

 

Figure 4: Demonstration of an increasing solute profile due to the shape factor A (and B) 

Next we set a boundary condition of cf = 10.5 wt.% at a look-ahead distance of δ = 250 µm. Figure 5 

shows that, with the new boundary condition, the solute profile has been increased. The solid lines 

show the original profiles with the infinite look-ahead distance; the broken lines show the solute 

profiles for the finite look-ahead boundary condition. For completeness we also show the effect of 

the aspect ratio on the solute profiles. By increasing the solute level at a finite distance we have 

increased the solute levels ahead of the dendrite tip and we have decreased the solute gradient at 

the tip position.  
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Figure 5: The solid lines are the same as given in figure 4. The broken lines show how the solute profile is changed by 

setting the far boundary condition at cf=10.5 wt.% and δ = 250 µm. The effect of shape factor is also shown 

 

The solution for the Peclet number (tip radius and growth rate) and tip composition are solved using 

a double iterative scheme which iterates firstly on R and secondly on P. Thus, for a given tip 

undercooling and far-field composition, cf, at a distance δ ahead of the tip, we solve for P, R, V, and 

ct. Throughout the rest of this section the results for all four parameters are plotted against the 

global undercooling, ΔTT. The model is demonstrated based on results for an alloy of Al-10Wt.%Cu. 

Table 1 gives the data used for this alloy. Note that, for demonstration purposes, we have taken the 

stability parameter as �� � 1 4��⁄ , which is the value given by marginal stability. In this case 

marginal stability is deemed fit for purpose. 

Table 1: Al-10wt.%Cu data  

Property Value  

Melting Point of Pure Aluminium, TM 933 K 

Liquidus Temperature, TL 904 K 

Slope of the Liquidus Line, m -2.9 K/wt.%Cu 

Gibbs-Thompson coefficient, Γ 1.4 x 10
-7

 mK 

Partition Coefficient, k 0.127 

Diffusivity of solute in Liquid, D 2.4 x 10
-9

 m
2
/s 

 

Figure 6 gives the results for the case where the look-ahead distance is sent to infinity and the look-

ahead composition is set to the original composition, that is , cf = co. The aspect ratio parameter, A, is 
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set to three levels, namely, A = 1, A = 0.9, and A = 0. Figure 6(a) shows the Peclet number; figure 

6(b), the tip’s growth rate; figure 6(c) the tip radius; and figure 6(d), the tip composition all versus 

global undercooling.  Generally, at a given global undercooling, as we decrease A, we decrease the 

Peclet number and the growth rate. Otherwise as we decrease A, the tip radius increases and the tip 

composition increases very slightly (only appreciable at the higher undercooling).  

 The parameter A has a strong effect on the growth rate as demonstrated in figure 7. Figure 7 shows 

the tip growth rate versus global undercooling with the parameter A varying between two ranges, 

specifically, 0.99 ≥ A ≥ 0.91 in steps of 0.01 and 0.9 ≥ A ≥ 0.1 in steps of 0.1. As A tends towards zero 

we get convergence: for A < 0.6 we see close agreement with solution for A = 0. 

 

Figure 6: Results for Al-10wt%Cu with cf = co, δ → ∞, and for three cases of aspect ratio, A = 1, A = 0.9, A = 0. 
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Figure 7: Growth rate versus global undercooling for Al-10wt.%Cu: A = 1 (3D), A = 0 (2D). Dashed lines show results for A 

in the range 0.99 ≥ A ≥ 0.91 with a uniform step size of 0.01. Solid lines show the results for A in the range 0.9 ≥ A ≥ 0.1 

with a uniform step size of 0.1. 

 

Figure 8: Results for Al-10wt%Cu with cf = co, A = 0.9, and two cases look-ahead distance: δ → ∞ (solid line) and δ = 50 

μm (dashed line). 
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Figure 8 compares two cases, both with with A = 0.9 and cf = co, but one with δ →∞ and the other 

with δ = 50 μm. We see that by setting the composition to co at some finite distance increases the 

Peclet number (figure 8(a)) and the growth rate (figure8(b)), especially at the lower global 

undercooling levels. The tip radius is reduced by setting the composition to co at a finite δ (figure 

8(c)). The composition at the dendrite tip, ct, is practically unaffected by the change in δ (shown in 

figure 8(d)). The results for the Peclet number in figure 8(a) are similar to those shown by Gandin et 

al. [28]. At the lower undercooling levels, setting the composition at co at some finite distance 

increases the composition gradient at the tip, thus the growth rate is increased. At the larger 

undercooling levels (or higher growth rates) the solutal length of the composition profile at the tip is 

very short: hence the solute profile reaches levels close to co after a short distance (<<50 μm) ahead 

of the tip. Hence, at the higher levels of undercooling, a δ = 50 μm is practically the same as the 

infinite condition and we see agreement between results in figure 8. 

 

Figure 9: Results for Al-10wt%Cu with A = 0.9 and two cases:  cf = co and δ→∞ (solid line), and cf = 11wt.%Cu and δ = 50 

μm (dashed line). 

Figure 9 shows two scenarios: one with A = 0.9, cf = co = 10wt.%Cu, and δ at infinity, and the other 

with A = 0.9, cf = 11wt.%, and δ = 50 μm. The most significant change brought about by the increase 

in solute to 11 wt.%Cu is the large reduction in Peclet number (figure 9(a)) and growth rate (figure 

9(b)) across all levels of global undercooling. The tip radius (figure 9(c)) is increased when the far-

field solute level is increased. Figure 9(d) shows that at low undercoolings, the composition of liquid 

at the dendrite tip is 11 wt.%Cu, hence, the bath of liquid is uniformly at 11 wt.%Cu and the 

composition gradient at the tip is zero. It is only above a critical level of global undercooling that we 
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see dendritic growth conditions. In our example it is at global undercooling levels above 3 K, that we 

start to see dendritic growth. It is clear to see that the Peclet number is zero at the critical 

undercooling; hence, the growth rate is also zero. From figure 9(d), it is clear that growth occurs only 

when the tip composition increases above cf, thus producing a composition gradient at the tip. 

The identification of a critical global undercooling, where the growth rate is zero, is an important 

novel feature from the newly extended dendrite growth model. It is important to point out that the 

original Ivantsov formulation can only predict a zero growth rate when the global undercooling is 

zero; thus, for all global undercooling levels greater than zero, the original Ivantsov model always 

predicts growth. However, if solute levels are made artificially higher in the liquid around the 

dendrite, the present model predicts that growth may be prevented at non-zero values of global 

undercooling. If solute levels are too high and global undercooling is below the critical value, then it 

is proposed that any existing solid may retreat or melt. Remelting can occur if solute is transported 

by fluid flow from other liquid regions where solidification is occurring or has occurred. This work 

only considers the growth kinetics. No discussion on the kinetics of melting (or remelting) is 

provided. Indeed it should be possible to include a model of melting into the numerical scheme used 

here, but this is deemed to be beyond the scope of the present manuscript. Rettenmeyr [38] 

recently provided a review of theory in melting and remelting. Campenalla et al. [39] provide 

interesting and detailed discussions on remelting in a mushy zone due to solute enrichment by fluid 

flow. They show that remelting can cause dendrite tips to retreat, but deeper in the mush, remelting 

may cause fragmentation.  

6. Demonstration using Experimental Data 

McFadden et al. [40] have demonstrated an application of the current model to data taken from an 

in-situ synchrotron experiment at the European Synchrotron Radiation Facility. The experiment was 

performed on a solidifying Al-12wt.%Ge alloy inoculated with TiB2 for nucleation. The experiment 

used a Bridgman furnace to investigate the solidification of two impinging equiaxed dendrites. The 

equiaxed dendrites nucleated at a distance of approximately 700 μm from each other; hence, the 

length scale of the solidification was less than 1 mm.  

Tip growth rates were estimated from the X-ray video sequence. The solute level at the point 

equidistant from the two impinging dendrite arms (i.e., the midpoint) was measured. Solute levels 

between the dendrites were observed as solidification proceeded to full impingement.  

The generalised dendrite growth model was applied with a selection parameter of �� � 1 4��⁄  and 

the aspect ratio parameter was assumed to be unity, i.e.,  A = 1.  

A comparison was made between results of the current model and an Ivantsov model of isolated 

dendrite growth. The results showed that an initial stage of isolated growth (no solutal interaction) 

was followed by solutal interaction or solutal soft impingement. During the stage of solutal 

interaction, the growth rates of the dendrite arms were shown to be determined by the local 

undercooling (equation (38)) and not the global undercooling (equation (33)). Hence the modified 

model had the advantage that it allowed for a decelerating growth rate with an increasing global 

undercooling (providing that the local undercooling was diminishing too). Figure 10 demonstrates 
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this behaviour by showing the levels of global tip undercooling and local tip undercooling versus 

time for the solidification event reported in [40].  

 

Figure 10: Global tip undercooling and local tip undercooling for an Al-Ge alloy experiment (McFadden et al. [40]) 

Calculations of the dendrite tip radius were also presented in [40]. The model predicts that the 

values for the dendrite tip increases as solutal impingement occurs. Further detailed experimental 

results with measurement of the tip radii are required to determine the suitability of the model in 

this respect. 

7. Conclusion 

Mathematical details for a dendrite growth model are presented. The model is developed from the 

basis of an ansatz solution. The generality of the model is discussed in detail, and specific cases are 

shown to be consistent with established dendrite growth models that are derived by different 

methods, namely, Ivantsov [6] and Horvay-Cahn [7]. It is shown that by using the ansatz, it is possible 

to propose a composition field ahead of the tip by measuring at one coordinate only. A marginal 

stability criterion is used to determine the operating conditions at a dendrite tip, namely, the growth 

rate and the tip radius. A unique feature of the model is that it distinguishes between two 

undercooling levels: the global undercooling, which is based on the nominal composition, and the 

local undercooling, which is based on the solute composition measured at the coordinate ahead of 

the tip. The solute composition measured ahead of the tip may be different to the nominal 

composition. Uniquely, it is shown that for instances where there is a solute build up over the 

nominal composition ahead of the tip, there may be remelting of the dendrite tip at low, non-zero 

levels of global undercooling.  
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The model presented here is useful for investigating experimental, video-microscopy results of alloy 

dendrite growth viewed using synchrotron radiation. Detailed experimental measurements are 

required to determine the validity of the model. Specifically, geometrical features such as dendrite 

tip radius and aspect ratio must be acquired from experiments. In particular, measurements of 

dendrite tip radii are required to determine the validity of the model in the final stages of solutal 

impingement.  

The aspect ratio of dendrite needs to be measured to establish the relationship between the 

geometry and solute field around the dendrite. A study of growth in thin films using phase-field 

modelling may be useful in this respect. 

 The model will be useful for modellers modelling at various length scales [22,25,41]. For modellers 

working at the macro and meso scales, this model may be used in a simplified form to get 

solidification growth rates. In these models it will be important that global conservation of solute is 

upheld. Other modellers working at the micro scale, such as phase field modellers, may use the new 

model to verify their results. It is proposed that use of this model in conjunction with specific 

experiments will assist with the understanding of length scales in castings, especially in relation to 

solutal interactions. 
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Figure Captions List 

Figure 1: Composition ahead of a dendrite 

Figure 2:  Phase Diagram representation showing the global and local undercooling 

Figure 3: Schematic view of the liquidus temperature and constitutional undercooling ahead of a 

dendrite tip that is growing in a constrained way 

Figure 4: Demonstration of an increasing solute profile due to the shape factor A (and B) 

Figure 5: The solid lines are the same as given in figure 4. The broken lines show how the solute 

profile is changed by setting the far boundary condition at cf=10.5 wt.% and δ = 250 µm. The effect 

of shape factor is also shown. 

Figure 6: Results for Al-10wt%Cu with cf = co, δ → ∞, and for three cases of aspect ratio, A = 1, A = 

0.9, A = 0. 

Figure 7: Growth rate versus global undercooling for Al-10wt.%Cu: A = 1 (3D), A = 0 (2D). Dashed 

lines show results for A in the range 0.99 ≥ A ≥ 0.91 with a uniform step size of 0.01. Solid lines show 

the results for A in the range 0.9 ≥ A ≥ 0.1 with a uniform step size of 0.1. 

Figure 8: Results for Al-10wt%Cu with cf = co, A = 0.9, and two cases look-ahead distance: δ → ∞ 

(solid line) and δ = 50 μm (dashed line). 

Figure 9: Results for Al-10wt%Cu with A = 0.9 and two cases:  cf = co and δ→∞ (solid line), and cf = 

11wt.%Cu and δ = 50 μm (dashed line). 

Figure10: Global tip undercooling and local tip undercooling for an Al-Ge alloy experiment 

(McFadden et al. [40]) 

Table Caption List 
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Table 1: Al-10wt.%Cu data 
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